New mutations, proteins of novel coronavirus revealed

Bengaluru, Mar 04 (PTI):
A study from the Indian Institute of Science (IISc) has identified multiple mutations and unique proteins in isolates of SARS-CoV-2, the virus that causes COVID-19.
The recent study, published in the’Journal of Proteome Research’, has also shown that the host produces several proteins of their own as their body launches an immunological defence in response to the viral attack, the Bengaluru-based IISc said in a statement on Thursday. To better understand how the virus is mutating and its protein biology (proteins are made using genetic information), an IISc team led by Utpal Tatu, Professor in the Department of Biochemistry, has carried out a comprehensive proteo-genomic investigation a series of analyses of SARS-CoV-2 isolates.
The isolates or viral samples were recovered from nasal secretions of consenting COVID-19 positive individuals here.
The genomic analysis was done using what molecular biologists like Tatu call next generation sequencing (NGS), a technology that allows for rapid sequencing of the entire genome.
He says that sequencing the genomes of viral strains from around the world is important because it helps keep track of mutations that are arising constantly. His teams analysis suggests that the virus is now mutating faster than before the three Bengaluru isolates had 27 mutations in their genomes with over 11 mutations per sample, more than both the national average (8.4) and global average (7.3). To understand the spread and evolutionary history of the virus, the team constructed a global phylogenetic tree, or a tree of relatedness, of viral isolates using the sequence data. The phylogenetic analysis found that the Bengaluru isolates are most closely related to the one from Bangladesh.
It also showed that the isolates in India have multiple origins rather than having evolved from a single ancestral variant, the statement said. The SARS-CoV-2 genome codes for more than 25 proteins, but only a handful of these proteins have been identified so far, it said.
“Studying viral proteins provides functional information which is currently not well represented,” says Tatu. In the proteomic analysis, his team detected 13 different proteins most of them previously unidentified from clinical samples.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button